Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Opt Mater ; 1(11): 1836-1846, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38037651

RESUMO

Supraparticle (SP) microlasers fabricated by the self-assembly of colloidal nanocrystals have great potential as coherent optical sources for integrated photonics. However, their deterministic placement for integration with other photonic elements remains an unsolved challenge. In this work, we demonstrate the manipulation and printing of individual SP microlasers, laying the foundation for their use in more complex photonic integrated circuits. We fabricate CdSxSe1-x/ZnS colloidal quantum dot (CQD) SPs with diameters from 4 to 20 µm and Q-factors of approximately 300 via an oil-in-water self-assembly process. Under a subnanosecond-pulse optical excitation at 532 nm, the laser threshold is reached at an average number of excitons per CQD of 2.6, with modes oscillating between 625 and 655 nm. Microtransfer printing is used to pick up individual CQD SPs from an initial substrate and move them to a different one without affecting their capability for lasing. As a proof of concept, a CQD SP is printed on the side of an SU-8 waveguide, and its modes are successfully coupled to the waveguide.

2.
ACS Omega ; 8(49): 46804-46815, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107938

RESUMO

Here, we explore a catalyst-free single-step growth strategy that results in high-quality self-assembled single-crystal vertical GaN nanowires (NWs) grown on a wide range of common and novel substrates (including GaN, Ga2O3, and monolayer two-dimensional (2D) transition-metal dichalcogenide (TMD)) within the same chamber and thus under identical conditions by pulsed laser deposition. High-resolution transmission electron microscopy and scanning transmission electron microscopy (HR-STEM) and grazing incidence X-ray diffraction measurements confirm the single-crystalline nature of the obtained NWs, whereas advanced optical and cathodoluminescence measurements provide evidence of their high optical quality. Further analyses reveal that the growth is initiated by an in situ polycrystalline layer formed between the NWs and substrates during growth, while as its thickness increases, the growth mode transforms into single-crystalline NW nucleation. HR-STEM and corresponding energy-dispersive X-ray compositional analyses indicate possible growth mechanisms. All samples exhibit strong band edge UV emission (with a negligible defect band) dominated by radiative recombination with a high optical efficiency (∼65%). As all NWs have similar structural and optical qualities irrespective of the substrate used, this strategy will open new horizons for developing III-nitride-based devices.

3.
Nano Lett ; 23(4): 1451-1458, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36748796

RESUMO

Existing barriers to efficient deep ultraviolet (UV) light-emitting diodes (LEDs) may be reduced or overcome by moving away from conventional planar growth and toward three-dimensional nanostructuring. Nanorods have the potential for enhanced doping, reduced dislocation densities, improved light extraction efficiency, and quantum wells free from the quantum-confined Stark effect. Here, we demonstrate a hybrid top-down/bottom-up approach to creating highly uniform AlGaN core-shell nanorods on sapphire repeatable on wafer scales. Our GaN-free design avoids self-absorption of the quantum well emission while preserving electrical functionality. The effective junctions formed by doping of both the n-type cores and p-type caps were studied using nanoprobing experiments, where we find low turn-on voltages, strongly rectifying behaviors and significant electron-beam-induced currents. Time-resolved cathodoluminescence measurements find short carrier liftetimes consistent with reduced polarization fields. Our results show nanostructuring to be a promising route to deep-UV-emitting LEDs, achievable using commercially compatible methods.

4.
ACS Appl Electron Mater ; 5(12): 6929-6937, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162529

RESUMO

Titanium nitride (TiN) has emerged as a highly promising alternative to traditional plasmonic materials. This study focuses on the inclusion of a Cr90Ru10 buffer layer between the substrate and thin TiN film, which enables the use of cost-effective, amorphous technical substrates while preserving high film quality. We report best-in-class TiN thin films fabricated on fused silica wafers, achieving a maximum plasmonic figure of merit, -ϵ'/ϵ″, of approximately 2.8, even at a modest wafer temperature of around 300 °C. Furthermore, we delve into the characterization of TiN thin film quality and fabricated TiN triangular nanostructures, employing attenuated total reflectance and cathodoluminescence techniques to highlight their potential applications in surface plasmonics.

5.
ACS Appl Energy Mater ; 5(4): 3933-3940, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35497685

RESUMO

The sub-bandgap levels associated with defect states in Cu2ZnSnS4 (CZTS) thin films are investigated by correlating the temperature dependence of the absorber photoluminescence (PL) with the device admittance spectroscopy. CZTS thin films are prepared by thermolysis of molecular precursors incorporating chloride salts of the cations and thiourea. Na and Sb are introduced as dopants in the precursor layers to assess their impact on Cu/Zn and Sn site disorder, respectively. Systematic analysis of PL spectra as a function of excitation power and temperature show that radiative recombination is dominated by quasi-donor-acceptor pairs (QDAP) with a maximum between 1.03 and 1.18 eV. It is noteworthy that Sb doping leads to a transition from localized to delocalized QDAP. The activation energies obtained associated with QDAP emission closely correlate with the activation energies of the admittance responses in a temperature range between 150 K and room temperature in films with or without added dopants. Admittance data of CZTS films with no added dopants also have a strong contribution from a deeper state associated with Sn disorder. The ensemble of PL and admittance data, in addition to energy-filtered photoemission of electron microscopy (EF-PEEM), shows a detailed picture of the distribution of sub-bandgap states in CZTS and the impact of doping on their energetics and device performance.

6.
Microsc Microanal ; : 1-12, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35611839

RESUMO

The impact of secondary fluorescence on the material compositions measured by X-ray analysis for layered semiconductor thin films is assessed using simulations performed by the DTSA-II and CalcZAF software tools. Three technologically important examples are investigated: AlxGa1−xN layers on either GaN or AlN substrates, InxAl1−xN on GaN, and Si-doped (SnxGa1−x)2O3 on Si. Trends in the differences caused by secondary fluorescence are explained in terms of the propensity of different elements to reabsorb either characteristic or bremsstrahlung X-rays and then to re-emit the characteristic X-rays used to determine composition of the layer under investigation. Under typical beam conditions (7­12 keV), the quantification of dopants/trace elements is found to be susceptible to secondary fluorescence and care must be taken to prevent erroneous results. The overall impact on major constituents is shown to be very small with a change of approximately 0.07 molar cation percent for Al0.3Ga0.7N/AlN layers and a maximum change of 0.08 at% in the Si content of (SnxGa1−x)2O3/Si layers. This provides confidence that previously reported wavelength-dispersive X-ray compositions are not compromised by secondary fluorescence.

7.
Microsc Microanal ; 27(4): 696-704, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34218838

RESUMO

Wavelength-dispersive X-ray (WDX) spectroscopy was used to measure silicon atom concentrations in the range 35-100 ppm [corresponding to (3-9) × 1018 cm-3] in doped AlxGa1-xN films using an electron probe microanalyser also equipped with a cathodoluminescence (CL) spectrometer. Doping with Si is the usual way to produce the n-type conducting layers that are critical in GaN- and AlxGa1-xN-based devices such as LEDs and laser diodes. Previously, we have shown excellent agreement for Mg dopant concentrations in p-GaN measured by WDX with values from the more widely used technique of secondary ion mass spectrometry (SIMS). However, a discrepancy between these methods has been reported when quantifying the n-type dopant, silicon. We identify the cause of discrepancy as inherent sample contamination and propose a way to correct this using a calibration relation. This new approach, using a method combining data derived from SIMS measurements on both GaN and AlxGa1-xN samples, provides the means to measure the Si content in these samples with account taken of variations in the ZAF corrections. This method presents a cost-effective and time-saving way to measure the Si doping and can also benefit from simultaneously measuring other signals, such as CL and electron channeling contrast imaging.

8.
J Agric Food Chem ; 68(20): 5699-5706, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32357297

RESUMO

The first known findings of chocolate matrix interference on cannabinoid analytes is reported. Stock solutions of four biogenic cannabinoids (Δ9-tetrahydrocannabinol, cannabidiol, cannabinol, and cannabigerol) and one synthetic cannabinoid (cannabidiol dimethyl ether) are subjected to milk chocolate, dark chocolate, and cocoa powder. A clear trend of matrix interference is observed, which correlates to several chemical factors. The amount of chocolate present is directly proportional to the degree of matrix interference, which yields lower percent recovery rates for the cannabinoid analyte. Structural features on the cannabinoid analytes are shown to affect matrix interference, because cannabinoids with fewer phenolic -OH groups suffer from increased signal suppression. Additionally, aromatization of the p-menthyl moiety appears to correlate with enhanced matrix effects from chocolate products high in cocoa solids. These findings represent the first known documentation of chocolate matrix interference in cannabinoid analysis, which potentially has broad implications for complex matrix testing in the legal Cannabis industry.


Assuntos
Canabinoides/análise , Chocolate/análise , Aditivos Alimentares/análise , Preparações de Plantas/análise , Cacau/química , Cannabis/química , Fenóis/análise , Sementes/química
9.
Soft Matter ; 15(39): 7757-7764, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31482905

RESUMO

In the search for advanced materials active particles could offer unique structural and functional properties, with tunable time-dependent characteristics. We demonstrate here that the direction of self-propulsion, relative to the particle orientation, may be as influential for the phase behavior as the pair interactions are for passive particles, and enable dynamic properties that are not available to passive systems. We perform simulations on ensembles of self-propelled squares, and find that squares that self-propel in the direction perpendicular to a side rapidly reach a steady state with a characteristic cluster distribution, positional order, and well-defined diffusion constant. After tuning the direction towards a corner, the particles form large and dense clusters that show a transient collective motion, and display remarkable fluctuations over long time scales, with a distinct periodicity. Clusters of these particles appear unstable beyond a critical size, and susceptible to a catastrophic disintegration. Directionality is found to effect equally sharp transitions in the mixing properties of active squares and passive squares, and the behavior of the passive ensemble. We relate directionality to the collision dynamics and the resulting reaction network of clusters, evolved by a Kinetic Monte Carlo algorithm, to correlate propulsion direction to the observed phase behavior. Understanding this behavior could offer new design rules for programmable materials, and grant further insights in the dynamic processes that nature employs for self-assembly.

10.
ACS Appl Mater Interfaces ; 10(39): 33441-33449, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30188116

RESUMO

Three-dimensional core-shell nanostructures could resolve key problems existing in conventional planar deep UV light-emitting diode (LED) technology due to their high structural quality, high-quality nonpolar growth leading to a reduced quantum-confined Stark effect and their ability to improve light extraction. Currently, a major hurdle to their implementation in UV LEDs is the difficulty of growing such nanostructures from Al xGa1- xN materials with a bottom-up approach. In this paper, we report the successful fabrication of an AlN/Al xGa1- xN/AlN core-shell structure using an original hybrid top-down/bottom-up approach, thus representing a breakthrough in applying core-shell architecture to deep UV emission. Various AlN/Al xGa1- xN/AlN core-shell structures were grown on optimized AlN nanorod arrays. These were created using displacement Talbot lithography (DTL), a two-step dry-wet etching process, and optimized AlN metal organic vapor phase epitaxy regrowth conditions to achieve the facet recovery of straight and smooth AlN nonpolar facets, a necessary requirement for subsequent growth. Cathodoluminescence hyperspectral imaging of the emission characteristics revealed that 229 nm deep UV emission was achieved from the highly uniform array of core-shell AlN/Al xGa1- xN/AlN structures, which represents the shortest wavelength achieved so far with a core-shell architecture. This hybrid top-down/bottom-up approach represents a major advance for the fabrication of deep UV LEDs based on core-shell nanostructures.

11.
Materials (Basel) ; 11(7)2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976880

RESUMO

As a route to the formation of regular arrays of AlN nanorods, in contrast to other III-V materials, the use of selective area growth via metal organic vapor phase epitaxy (MOVPE) has so far not been successful. Therefore, in this work we report the fabrication of a highly uniform and ordered AlN nanorod scaffold using an alternative hybrid top-down etching and bottom-up regrowth approach. The nanorods are created across a full 2-inch AlN template by combining Displacement Talbot Lithography and lift-off to create a Ni nanodot mask, followed by chlorine-based dry etching. Additional KOH-based wet etching is used to tune the morphology and the diameter of the nanorods. The resulting smooth and straight morphology of the nanorods after the two-step dry-wet etching process is used as a template to recover the AlN facets of the nanorods via MOVPE regrowth. The facet recovery is performed for various growth times to investigate the growth mechanism and the change in morphology of the AlN nanorods. Structural characterization highlights, first, an efficient dislocation filtering resulting from the ~130 nm diameter nanorods achieved after the two-step dry-wet etching process, and second, a dislocation bending induced by the AlN facet regrowth. A strong AlN near band edge emission is observed from the nanorods both before and after regrowth. The achievement of a highly uniform and organized faceted AlN nanorod scaffold having smooth and straight non-polar facets and improved structural and optical quality is a major stepping stone toward the fabrication of deep UV core-shell-based AlN or AlxGa1-xN templates.

12.
Sci Rep ; 8(1): 1742, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379097

RESUMO

Multiple luminescence peaks emitted by a single InGaN/GaN quantum-well(QW) nanorod, extending from the blue to the red, were analysed by a combination of electron microscope based imaging techniques. Utilizing the capability of cathodoluminescence hyperspectral imaging it was possible to investigate spatial variations in the luminescence properties on a nanoscale. The high optical quality of a single GaN nanorod was demonstrated, evidenced by a narrow band-edge peak and the absence of any luminescence associated with the yellow defect band. Additionally two spatially confined broad luminescence bands were observed, consisting of multiple peaks ranging from 395 nm to 480 nm and 490 nm to 650 nm. The lower energy band originates from broad c-plane QWs located at the apex of the nanorod and the higher energy band from the semipolar QWs on the pyramidal nanorod tip. Comparing the experimentally observed peak positions with peak positions obtained from plane wave modelling and 3D finite difference time domain(FDTD) modelling shows modulation of the nanorod luminescence by cavity modes. By studying the influence of these modes we demonstrate that this can be exploited as an additional parameter in engineering the emission profile of LEDs.

13.
Sci Rep ; 7(1): 10804, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883495

RESUMO

Pushing the emission wavelength of efficient ultraviolet (UV) emitters further into the deep-UV requires material with high crystal quality, while also reducing the detrimental effects of built-in electric fields. Crack-free semi-polar [Formula: see text] Al x Ga1-x N epilayers with AlN contents up to x = 0.56 and high crystal quality were achieved using an overgrowth method employing GaN microrods on m-sapphire. Two dominant emission peaks were identified using cathodoluminescence hyperspectral imaging. The longer wavelength peak originates near and around chevron-shaped features, whose density is greatly increased for higher contents. The emission from the majority of the surface is dominated by the shorter wavelength peak, influenced by the presence of basal-plane stacking faults (BSFs). Due to the overgrowth technique BSFs are bunched up in parallel stripes where the lower wavelength peak is broadened and hence appears slightly redshifted compared with the higher quality regions in-between. Additionally, the density of threading dislocations in these region is one order of magnitude lower compared with areas affected by BSFs as ascertained by electron channelling contrast imaging. Overall, the luminescence properties of semi-polar AlGaN epilayers are strongly influenced by the overgrowth method, which shows that reducing the density of extended defects improves the optical performance of high AlN content AlGaN structures.

14.
Appl Opt ; 56(3): B64-B69, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157866

RESUMO

GaN1-xSbx with x∼5%-7% is a highly mismatched alloy predicted to have favorable properties for application as an electrode in a photoelectrochemical cell for solar water splitting. In this study, we grew GaN1-xSbx under conditions intended to induce phase segregation. Prior experiments with the similar alloy GaN1-xAsx, the tendency of Sb to surfact, and the low growth temperatures needed to incorporate Sb all suggested that GaN1-xSbx alloys would likely exhibit phase segregation. We found that, except for very high Sb compositions, this was not the case and that instead interdiffusion dominated. Characteristics measured by optical absorption were similar to intentionally grown bulk alloys for the same composition. Furthermore, the alloys produced by this method maintained crystallinity for very high Sb compositions and allowed higher overall Sb compositions. This method may allow higher temperature growth while still achieving needed Sb compositions for solar water splitting applications.

15.
Adv Mater ; 26(43): 7290-4, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25228062

RESUMO

A novel BODIPY-containing organic small molecule is synthesized and employed as a down-converting layer on a commercial blue light-emitting diode (LED). The resulting hybrid device demonstrates white-light emission under low-current operation, with color coordinates of (0.34, 0.31) and an efficacy of 13.6 lm/W; four times greater than the parent blue LED.

16.
Microsc Microanal ; 20(1): 55-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24230966

RESUMO

We combine two scanning electron microscopy techniques to investigate the influence of dislocations on the light emission from nitride semiconductors. Combining electron channeling contrast imaging and cathodoluminescence imaging enables both the structural and luminescence properties of a sample to be investigated without structural damage to the sample. The electron channeling contrast image is very sensitive to distortions of the crystal lattice, resulting in individual threading dislocations appearing as spots with black-white contrast. Dislocations giving rise to nonradiative recombination are observed as black spots in the cathodoluminescence image. Comparison of the images from exactly the same micron-scale region of a sample demonstrates a one-to-one correlation between the presence of single threading dislocations and resolved dark spots in the cathodoluminescence image. In addition, we have also obtained an atomic force microscopy image from the same region of the sample, which confirms that both pure edge dislocations and those with a screw component (i.e., screw and mixed dislocations) act as nonradiative recombination centers for the Si-doped c-plane GaN thin film investigated.

17.
Nanotechnology ; 24(36): 365704, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23958638

RESUMO

Significant improvements in the efficiency of optoelectronic devices can result from the exploitation of nanostructures. These require optimal nanocharacterization techniques to fully understand and improve their performance. In this study we employ room temperature cathodoluminescence hyperspectral imaging to probe single GaN-based nanorods containing multiple quantum wells (MQWs) with a simultaneous combination of very high spatial and spectral resolution. We have investigated the strain state and carrier transport in the vicinity of the MQWs, demonstrating the high efficiencies resulting from reduced electric fields. Power-dependent photoluminescence spectroscopy of arrays of these nanorods confirms that their fabrication results in partial strain relaxation in the MQWs. Our technique allows us to interrogate the structures on a sufficiently small length scale to be able to extract the important information.

18.
Microsc Microanal ; 18(6): 1212-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23211276

RESUMO

Hyperspectral cathodoluminescence imaging provides spectrally and spatially resolved information on luminescent materials within a single dataset. Pushing the technique toward its ultimate nanoscale spatial limit, while at the same time spectrally dispersing the collected light before detection, increases the challenge of generating low-noise images. This article describes aspects of the instrumentation, and in particular data treatment methods, which address this problem. The methods are demonstrated by applying them to the analysis of nanoscale defect features and fabricated nanostructures in III-nitride-based materials.

19.
J Phys Chem C Nanomater Interfaces ; 115(29): 14031-14035, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23710265

RESUMO

Localized surface plasmons within silver nanocubes less than 50 nm in size were investigated using high-resolution cathodoluminescence hyperspectral imaging. Multivariate statistical analysis of the multidimensional luminescence data set allows both the identification of distinct spectral features in the emission and the mapping of their spatial distribution. These results show a 490-nm peak emitted from the cube faces, with shorter-wavelength luminescence coming from the vertices and edges; this provides direct experimental confirmation of theoretical predictions.

20.
J Cutan Pathol ; 33(2): 171-4, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16420314

RESUMO

BACKGROUND: Myelodysplastic syndrome (MDS) is a group of bone marrow disorders associated with dyplasia of myeloid elements that may have cutaneous manifestations including infections, vasculitis, Sweet's syndrome, pyoderma gangrenosum, erythema elevatum diutinum, and leukemia cutis. These cutaneous manifestations are attributed to the underlying bone marrow defect. Langerhans cell histiocytosis (LCH) is primarily a pediatric disease, and rarely LCH has been described in association with pediatric MDS. We are aware of only a single case report of LCH associated with MDS in an adult. METHODS: We report two new cases of LCH in elderly patients with underlying MDS. The specimens were examined by routine microscopy as well as immunohistochemical stains for S100 protein and CD1a. RESULTS: Both patients were elderly men with established diagnoses of MDS. One presented with a solitary pruritic papule while the other had a 2-year history of erythematous papules involving the trunk and extremities. Histologic examination revealed intraepidermal and dermal collections of mononuclear cells with reniform nuclei. The cells were strongly positive for S100 and CD1a, confirming their identity as Langerhans cells. CONCLUSION: Cutaneous LCH may be associated with underlying MDS in adults and should be considered in the differential diagnosis of cutaneous eruptions in patients with MDS.


Assuntos
Histiocitose de Células de Langerhans/etiologia , Histiocitose de Células de Langerhans/patologia , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Darier/patologia , Diagnóstico Diferencial , Humanos , Imuno-Histoquímica , Masculino , Melanoma/complicações , Micose Fungoide/patologia , Parapsoríase/patologia , Pênfigo/patologia , Pitiríase Liquenoide/patologia , Neoplasias da Próstata/complicações , Neoplasias Cutâneas/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...